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In different areas of machine construction, the problem of the long-term strength and 
longevity of structural materials under multicyclical loading is given serious attention. A 
very large number of papers have been published to date in which different aspects of this 
problem are examined (see, for example, [1-4]). In most of these papers, however, the main 
attention was concentrated on obtaining experimental data and the formulation of empirical 
dependences. Only separate papers [5-7], referring to normal temperatures, in which the 
longevity under multicyclical loading is estimated based on model representations, are avail- 
able. 

In this paper we propose a possible variant of the analytical estimate of cyclical lon- 
gevity at high temperatures. 

i. Basic Starting Relations. We examine a straight cylindrical rod (Fig. la) under an 
axial load P which varies with time thus: 

P = p ~  • P ~ ( / t ) ,  ( 1 . 1 )  

where P is the resulting load; Pm and Pa are the amplitudes of the static and cyclical com- 
ponents; # is a function that characterizes the variation of Pa as a function of time t; f 
is the frequency of variation of Pa. For the multicyclical loading regime, it is character- 
istic that f > 1 Hz, while ~max = ~m + ]Oal < Oy, where ~y is the yield point of the mater- 
ial. To solve the problem, we shall start from the fact that under multicyclical loading 
(i.i) at high temperatures, i.e., for T > 0.5Tmelt (Tmelt is the melting temperature), fail- 
ure of the rod can occur due to fatigue or cyclical creep, or due to their combined develop- 
ment [4, 8, 9]. For many structural elements, the region of mixed failure, determined by the 
interaction of fatigue and creep, is the predominant form. We assume below that the param- 
eter m, which describes the accumulation of damage, can be chosen as one of the character- 
istics of the state [8]. We assume that the damage will with time accumulate both as a re- 
sult of creep, which is manifested in the change in the geometry of the rod and accumulation 
of scattered damage (Fig. ib), and as a result of fatigue, which is manifested in the accum- 
ulation of concentrated damage in the form of a fatigue crack (Fig. ic). As a result, the 
stressed state of the rod at any arbitrary moment in time t will be determined by the magni- 
tude of the instantaneous (true) values of the stresses, which can differ greatly from the 
initial fixed values. Going over from the loads to the instantaneous values of the stresses 
and selecting for } a harmonic law, we rewrite the condition of loading (i.i) in the form 

= s m§ sin(2a#+%), (1.2) 

where % is the initial phase angle, which is usually assumed to equal zero; o, am, o a are 
the instantaneous value of the stresses, which are determined from equations of the form 

o = o09(~Z,~y), (i. 3) 

a 

'- b 

C 

-6- @ 

Fig. 1 

Kiev. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 
144-148, March-April, 1984. Original article submitted January 6, 1983. 

0021-8944/84/2502-0305508.50 �9 1984 Plenum Publishing Corporation 305 



where ao, a is the initial and instantaneous value of the stress; e Z is the instantaneous 
value of the deformation of cyclical creep; ~y is the instantaneous value of fatigue damage. 

To solve the problem, we shall use the approach developed in [8] for determining the 
time of viscous-brittle fracture relative to conditions of static creep. In this case, in 
its simplest form the complete system of equations for uniaxial multicyclical loading with 
T = const can be represented in the form 

ez = ez(~n~o ' ~a0' ez' ~y) ;  (1.4) 

~y = %(%0, %0, 8z, %)" ( 1 . 5 )  

This approach, as is well known, is called the kinetic approach, and can be extended to 
the three-dimensional case. 

2. Longevity under Conditions of Cyclical Creep. We shall first examine the problem 
of de'termining the time up to failure only from creep, which under conditions of loading 
(1.2) is called cyclical, assuming that fatigue damage does not develop, i.e., ey = 0 (Fig. 
ib). In this case the rate of cyclical creep del/dt , according to the results in [9], is 
written in the form 

&z/dt = B(om)m(oa) k, ( 2 . 1 )  

w h e r e  e Z i s  t h e  d e f o r m a t i o n  o f  c y c l i c a l  c r e e p ;  am, a a a r e  t h e  i n s t a n t a n e o u s  v a l u e s  o f  t h e  
s t a t i c  and  c y c l i c a l  s t r e s s e s ;  B, m, a n d  k a r e  c o e f f i c i e n t s ;  a n d ,  i n  a d d i t i o n ,  k = 0 . 1 - 0 . 5 L ,  
w h i c h  p e r m i t s  g o i n g  f r o m  e x p o n e n t i a l  d e p e n d e n c e s  o f  cZ on  oa  [9]  t o  a p o w e r - l a w  d e p e n d e n c e .  

L e t  l ,  F b e  t h e  i n s t a n t a n e o u s  and  l o ,  Fo t h e  i n i t i a l  l e n g t h  a n d  c r o s s - s e c t i o n a l  a r e a  
o f  t h e  r o d .  Then  a m = P m / F ,  a a  = P / F ,  and  amo = P m / F o ,  aao = P a / F o .  A s s u m i n g  b e l o w  t h a t  
t h e  m a t e r i a l  o f  t h e  r o d  i s  i n c o m p r e s s i b l e ,  i . e . ,  F1 = F o l o ,  we f i n d  

or~ = ~rao l/lo' Oa = C~aol/l~ (2.2) 

Neglecting the instantaneous deformation, the rate of cyclical creep and deformation, 
using the instantaneous length of the rod, can be represented in the form 

dee t dl 1 
dt -- I d t '  er~=In-~-o'-- (2.3) 

Substituting (2.2), (2.3) into (2.1), we obtain the differential equation of cyclical 
creep 

I ~z [__i y-+~ 
T d--f = B (am0)m (%o)h ~ l. } ( 2 . 4 )  

with the initial conditions I/lo = 1 at t = 0. Separating variables and integrating Eq. (2.4), 
taking into account the initial condition, we obtain 

t = B (~ + k) (~0)m (%0)~ 
A s s u m i n g  t h a t  t h e  f a i l u r e  o f  t h e  r o d  o c c u r s  f o l l o w i n g  t h e  m o d e l  o f  a b s o l u t e  v i s c o u s  f a i l -  

u r e  [ 1 0 ] ,  i . e . ,  w i t h  Z = - ,  F = 0 ,  and  a = - ,  we w r i t e  t h e  t i m e  up t o  f a i l u r e  t p n  u n d e r  c o n -  
d i t i o n s  o f  c y l i c a l  c r e e p  i n  t h e  f o r m  

t:o n = l/[B(m -}- k)(amo)m(trao)k]. ( 2 . 5 )  

F o r  k = 0 ,  Eq.  ( 2 . 5 )  c o i n c i d e s  w i t h  t h e  m o d e l  o f  a n  a b s o l u t e l y  v i s c o u s  f a i l u r e  u n d e r  c o n d i -  
t i o n s  o f  s t a t i c  c r e e p .  

3 .  F a t i g u e  L o n g e v i t y .  When t h e  c o n d i t i o n s  f o r  t h e  l o a d i n g  ( 1 . 2 )  a r e  r e a l i z e d ,  a s  a l -  
r e a d y  n o t e d ,  p u r e l y  f a t i g u e  f a i l u r e  c a n  a r i s e ,  w i t h  w h i c h  t h e  r a t e  o f  d e v e l o p m e n t  o f  t h e  dam-  
a g e  d o e s  n o t  d e p e n d  on  c r e e p ,  i . e . ,  i n  ( 1 . 5 )  we a s s u m e  t h a t  e7 = 0 .  We s h a l l  c o n s i d e r  a s i m -  
p l i f i e d  v a r i a n t  o f  t h e  k i n e t i c  e q u a t i o n  o f  damage  ( 1 . 5 ) ,  a s s u m i n g ,  i n  a c c o r d a n c e  w i t h  t h e  
data in [8], that 

a%/at = (%)lh,, ( 3 . 1 )  
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where v is the velocity of the failure front; ~ is a coefficient. Next, we assume that, in 
the presence of fatigue concentrated damage in the form of a fatigue crack (see Fig. ic), 
which propagates in only one direction, i.e., 8 = 0, mainly forms. In this case, independent 
of the form of the function ~(t) in Eq. (i.i), in determining the velocity of the failure 
front v we shall use the scheme in [Ii], with which 

v = dly /d t  = C I / ( A K )  n =  Cl](aa )n, (3.2) 

where ly is the instantaneous length of the fatigue crack; AK is the peak-to-peak amplitude 
of the coefficient of intensity of the stresses; a a is the instantaneous value of the cycli- 
cal stress, which depends on Iy; Ca and n are coefficients, of which Ca depends on am. Ac- 
cording to the data in [12], for small values of a a the quantity Ca is proportional to the 
static stress, i.e., in this case, 

where C = Ca/om. 
Oa at arbitrary time t in the form 

a a = P a / F  = Pa/ [F0( l  --(oy)l = (YaO/(i --O)y) (3.2') 

and we solve Eq. (3.2') for the parameter my, 

~ = i - -  aaolcra" (3.3) 

Differentiating Eq. (3.3) with respect to time and substituting the results obtained and 
Eq. (3.2) into the starting kinetic equation (3.1), taking into account the fact that for 
B = 0, dmy/dt -~ dly/dt, we obtain the differential equation for fatigue damage: 

da  a Cfarno 
- -  d t .  ( 3 . 4 )  

(%)~+~ - -  %o 

I n t e g r a t i n g  Eq. ( 3 . 4 )  t a k i n g  i n t o  a c c o u n t  t h e  i n i t i a l  c o n d i t i o n  oa = ~ao a t  t = 0,  we 
obtain 

% o [ 1  t ]  
t = C] (t -~ n) O'mo (O-ao)l+n (Oa)l+n " 

v = Cl(a~)~am, 

We represent the instantaneous value of the amplitude of the cyclical stress 

Assuming that purely fatigue failure is brittle and that the failure of the rod occurs 
with my = i and ~a = ~, we write the time for fatigue failure tff in the form 

tpu = t / t c i o  + n)('~,o)n,%o] (3.5) 
The structure of Eq. (3.5) is analogous to the equation of brittle failure with creep 

under conditions of static loading [8]. 

4. Lonsevity Under Conditions of Interaction of Fatigue and Creep. To estimate the 
time of mixed failure, we shall examine the combined solution of the system of equations 
(1.4), (1.5). It is evident that the equation of creep will depend on the fatigue damage, 
while the fatigue damage will reflect the effect of creep. In this case, the true values of 
the stresses are determined taking into account the decrease in the area of the transverse 
cross section of the rod both as a result of fracturing and as a result of creep, i.e., 

O'mo O'ao 
am= 1 - - %  e~z' % -  t - - ~ y  e~z' ( 4 . 1 )  

while Eqs. (1.3), (1.4), substituting (2.1), (3.1), (3.2), and (4.1), are rewritten in the 
form 

de~ B (m+h)~  (amo)m (%o)h; (4.2) 
dt -- (1 --  O)y) m+k e 

diOy C]" " e (1-Fn)sE ( 4 . 3 )  
. ;  (%o) 

i n  a d d i t i o n ,  a t  t = O, eZ = 0 and my = O, w h i l e  a t  t = t p ,  r = = and my = 1. 
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Separating variables in Eq. (4.3) and integrating with the initial condition my = 0 at 
t = 0, and using the expression for the time of purely fatigue failure (3.5), we obtain 

1 

[ e(l+n)eE(2~n)t ] ~-7~ (4.4) 
i - - o y =  l ( t+n) tpu " 

The differential equation of cyclical creep (4.2), taking into account (4.4), is written 
in the form 

d8 Z Be(m+h)aE 
dt -- [ I -- (2 +(l n)~e(l+n)eEt ] m+k tpy ~ (4.5) 

To obtain the solution in an explicit form, we shall restrict our attention to conditions 
under which creep does not affect the formation of cracks, i.e., we assume in (4.5) that 
(i + n)e Z = 0. The variables in (4.5) separate in this case, and integrating with the ini- 
tial condition eZ = 0 at t = 0, using the expression for the time of failure as a function 
of the cyclical creep (2.5), we obtain 

{[ t t -}- n (m q- k - -  n - -  2) (1 --  e -(m+h)ez) tpn ra+h-:n-~ 
tpy =2-~-n t - -  l-~- (l-~n)(2-~-n)tpy ( 4 . 6 )  

To determine the time of mixed failure, tpZ , we set in Eq. (4.6) e Z = -, from where 

tp~ i - ~ . n l [ ( m - ~ - k - - n - - 2 ) ' t p n ]  2+n .~ 
-- [ [ re+k--n--21 �9 

tpy 2 7  n , - -  t +  ( ~ i ~ 7 ~ ) t - - ~ - u  j 
(4.7) 

It is evident from the structure of Eq. (4.7) that creep decreases the longevity of the 
rod, found from the scheme of purely fatigue failure, since tpZ < tpy. Formula (4.7) is 
valid for o # 0 and in the opposite case purely viscous failure occurs. For Om = 0, the 
time of purely fatigue failure is determined from Eq. (4.7). 

We shall examine the relation between the longevity with mixed failure and the longevity 
under conditions of creep development. For this we separate variables in (4.2) and integrate 
with the initial condition sZ = 0 at t = 0. Taking into account the expression for the time 
of failure as a result of cyclical creep (2.5), we obtain 

]-i (4.8) e (m+~)~ ----- t (1 -- r tpn " 

The differential equation for the damage parameter (4.3), taking into account (4.8), is 
written in the form 

dt - -  ( l - -  O)g) l + n  (6ao)n rJmO l - -  ( l - -  toy) m+h tpn ] 
(4.9) 

To obtain the solution in an explicit form, we again restrict our attention to conditions 
under which creep does not affect the accumulation of damage, i.e., we assume in (4.9) that 
m + k = 0. The variables in (4.9) separate in this case and, integrating with the initial 
condition my = 0 at t = 0, using the expression for the time of fatigue failure (3.5), we ob- 
tain 

m+k 

t, [ (i + n) (i + ~ - m - k) tp,~ ~ I+ .... 

tp n - - i - -  ~lq-  ~-~_lCn~. -~)  [ i - -  (1 - -  ~u)2+~] tvntJ " 
(4.10) 
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To determine the time of mixed failure tpE , we set in Eq. (4.10) ~y = 1 at t = tp7, i.e., 

m+h 

tp x _ l  [ l~_ ( l_~n)(t_~z__m__k)tpy 1 l+n--m--]~ (4.11) 
tp~ [ J ( 2  + n) (m + k) tp,~ 

It is evident from the structure of Eq. (4.11) that fatigue damage decreases the 
longevity of the rod, found from the condition of failure due to creep, since tpx < tpn. 

As an example, we shall calculate the time up to failure of samples of heat-resistant 
nickel alloy at 800~ tested under the loading conditions (i.i). Figure 2 shows the experi- 
mental points and the approximating line (continuous curve) according to the data in [4]. 
The dashed curve was calculated using Eq. (4.7). Here we used the following starting data: 
Om = 20 kg/mm 2, f = 50 Hz, log B = --12, C = 1.52"i0-8,k =6.3, m = 7.5, n = 2.2. It is evi- 
dent that on the whole the agreement between the experimental results and the calculation is 
satisfactory (the maximum error does not exceed 15%). 

We shall also examine the possibility of using Eqs. (4.7) and (4.11) to calculate the 
curves of equal longevity, whose well-known form is given in terms of the diagram of limiting 
stresses in the coordinates ffa-- Om [3, 4, 8]. In this case, taking into account the fact 
that for curves of equal longevity tpy = tpn , and solving Eqs. (4.7) and (4.11) for qa, we 
obtain the following equations for the diagrams of limiting stresses: 

i I I 

%0 = Bi  ((lmo) n (tp~,) n I t / ( 2  + n)l n; ( 4 . 1 2 )  

where 

_~ _~ _! (4.13) 
% o = B ~ ( % o )  ~ ( t , = )  ~ [ B ( ~ + k ) l  h, 

�9 2 + , ,  ~! 
r e + k - - n - - 2  

, .+h  ~l 
BZ= i-- [i+ (l+n)(l+n--m--k)] 1+n=m--klk 

(2 + ~?~ . �9 

It is evident from the structure of Eqs. (4.12) and (4.13) that as the time to failure 
increases or as one of the components of the limiting stress increases, the other component 
decreases. In contrast to the well-known [i, 3, 4, 12] equations, Eqs. (4.12) and (4.13), 
which contain as one of the parameters the time up to failure, permit calculating the limit- 
ing stresses, without being tied to experimental data on fatigue resistance with a symmetri- 
cal cycle and on the resistance of prolonged static strength. 

As an example, we shall calculate the diagrams of limiting stresses for the alloy EI867 
at 900~ the experimental data for which are taken from [12]. Figure 3 shows the experi- 
mental data (points) and diagrams, calculated using Eq. (4.13) (dashed lines) for longevities 
of i, i0, and I00 h (points 1-3, respectively). In the calculation, we used the following 
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values of the coefficients: C = 2.2.10 -11 , log B = --11.2, m = 7.2, k = 0.5, n = 4.2. A 
comparison shows that the computed diagrams agree satisfactorily with the experimental data 
(the error does not exceed 12%). 

Thus the general approach of Yu. N. Rabotnov to estimating the time of viscous--brittle 
fracture under conditions of static creep permits solving the problem of calculating the lon- 
gevity of heat-resistant materials under multicyclical loading. It was shown that the longev- 
ity under conditions of interaction of fatigue and creep is shorter than under conditions of 
only fatigue or only creep. 
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